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Abstract—Although the multichannel decision feedback
equalizer (DFE) has been shown to be nearly optimal and
very effective for handling the difficulties of the underwater
communications channel, this technique has been slow to be
implemented in operational systems due to its high computa-
tional complexity. In this paper, we propose using measurements
commonly available to oceanographic systems, such as depth,
range, and speed of sound, to create a model of the arrival struc-
ture at a receiver with multiple elements. Three structuresare
presented which take advantage of this model to constrain the
complexity of the multichannel DFE: a beamspace approach, a
time-aligned beamspace approach, and an approach which uses
discrete prolate spheroidal functions. Each of these approaches
is integrated into a multichannel, direct adaptation DFE which
is implemented using a recursive least squares (RLS) algorithm.
The proposed structures are tested using the SPACE08 data set
across a range of environmental conditions and using several
exponential forgetting factors. It is found that these constrained
approaches provide significant computational advantages over
the full sensor-space approach and performance advantages
over other computationally similar algorithms.

I. I NTRODUCTION

Currently, there is a disconnect between methods proposed
in the literature for improving underwater acoustic commu-
nication and what is implemented in operational systems. A
major reason for this disconnect is that the methods proposed
in the academic literature tend to have high computational
complexity and are thus impractical for the types of hardware
currently available for use.

Multichannel equalization was shown in [1] to be a nearly
optimal method for handling the difficulties of the underwater
communication channel. Operational systems have been slow
to adopt this method die to its computational complexity. In
this paper, we present a method which uses measurements
typically available to oceanographic systems, such as depth,
range, and speed of sound, to create a model of the arrival
structure of energy at a receiver. This model will be used to
constrain the look directions of a beamformer and thus to
reduce the complexity of the multichannel equalizer.

In their seminal work on adaptive equalization for un-
derwater communication, Stojanovic et al [1] found that
the optimal multichannel combiner, assuming the channel is
known, is the sampled sum of the individual channel matched
filters followed by a maximum likelihood sequence estimator
(MLSE). Rather than implement this approach in its full com-

plexity, the authors recommend using a decision feedback
equalizer (DFE) in place of the MLSE and furthermore show
that empirically, and adaptive multichannel DFE is nearly
optimal in the underwater channel.

In a subsequent paper [2], the same set of authors demon-
strated that introducing a beamformer into the framework
was mathematically equivalent to using the full sensor space,
when the direction of arrival of the received signals is known.
When the directions are not known, the authors showed as
long as the observed beamspace spans the received signal
space and the observation noise is spatially white, there isno
loss of performance from using a beamformer to pre-process
the data.

Stojanovic also noted that, unlike many array processing
application, underwater communication systems did not seek
to eliminate multipath arrivals as interference, but instead
sought to collect all the signal energy at the receiver. This
changed the strategy for array receivers from using the
beamformer to separate arrivals from each other to using
the beamformer to gather and coherently combine the energy
from all arrival paths.

In this work, we build on this idea of energy collection.
The difference in our approach comes from the observation
that while we often don’t know the exact angles of arrival,
we can estimate roughly the angular spread of the incoming
arrivals based on the transmitter / receiver geometry. From
a model of the arrival structure, we propose creating an
orthogonal set of beams which span the estimated range
of arrival angles to collect the incoming signal energy. The
resulting beams are fed into a multichannel direct-adaptation
DFE and the received symbols are estimated.

The idea of using physical constraints to improve under-
water acoustic signal processing is not a new one. Kraay and
Baggeroer [3] proposed the idea of a physically constrained
method for array processing. They proposed using narrow-
band plane waves across the array to constrain the estimated
signal covariance matrix to be one that could be realized by
signals obeying the propagation constraints. Their goal was to
reduce the number of snapshots needed to properly estimate
a covariance matrix.

Papp et al [4], [5] applied this idea to mode processing in
the application of underwater acoustic communications. They
showed that it is possible to use mode filtering to improve



array processing. However, when applied to equalization,
a direct-adaptation equalizer with no pre-processing had
lower residual mean-squared-error than the mode filtering ap-
proach. Furthermore, these approaches focused on reducing
the amount of data needed for estimation without focusing on
the computational complexity. As a result, these approaches
require high computational complexity.

LeBlanc and Beaujean [6] proposed applying principle
component analysis (PCA) to acoustic communication sys-
tems with receive arrays to improve equalizer performance.
The received data correlation matrix is decomposed into
its eigenvalue - eigenvector form to determine the signal-
subspace. This method appears to hold promise in terms of
reducing mean squared error, but requires a form of subspace
tracking, which has high computational complexity.

Our proposed method of using an arrival structure model
reduces the complexity of the resulting multichannel equal-
izer without introducing much additional overhead complex-
ity. If the transmitter and receiver are both stationary, the
model can be computed ahead of time. Even when the
transmitter or receiver (or both) are moving, the change in
the observed physical parameters is very slow compared with
the data rate.

The remainder of this paper is organized as follows: section
II describes multichannel decision feedback equalization,
Section III describes beamforming, and Section IV describes
the acoustic propagation model for shallow water. Section
V includes the description of three proposed equalizer im-
plementations. Section VI shows our validation of these
ideas using experimental evidence and section VII contains
conclusions and final thoughts.

Throughout this paper, lowercase bold letters,a, indicate
vectors, uppercase bold letters,A, indicate matrices, and non-
bold symbols are used for scalars. The symbolsT indicates
the transpose of a quantity,∗ the conjugate, andH the
conjugate transpose or Hermitian. All vectors are assumed
to be column vectors.

II. D ECISION FEEDBACK EQUALIZATION

The decision feedback equalizer (DFE) consists of two
linear filters working together: the feedforward filter collects
the energy from the received signal and shapes its response
and the feedback filter cancels the inter-symbol interference
(ISI) from previously received symbols [7]. The general DFE
equation can be written as:

d̃[n] =

Lc−1
∑

ℓ=−La

a∗[ℓ]u[n− ℓ] +

Lfb
∑

ℓ=1

b∗[ℓ]d̂[n] (1)

whereu[n] is the baseband received data,d̂[n] is the past
symbol decisions, and̃d[n] is the filtered received data
before a symbol decision has been made. The feedforward
filter coefficients are represented asa[n] and the feedback
coefficients asb[n]. The total number of DFE coefficients is
L = La + Lc + Lfb.

The DFE equation can be represented more compactly
using vector notation as:

d̃[n] = a
H
u[n] + b

H
d̂[n− ℓ] = h

H
z[n] (2)
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Fig. 1. A multichannel decision feedback equalizer.

whereh
T = [aT b

T ] is a vector of filter coefficients and
z
T [n] = [uT [n] d̂T [n]] is a data vector containing both the

received data and the past symbol estimates.
This framework can be modified to accommodate multiple

receivers by expanding the definition of the filter and data
vectors to be:
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where there areK receive elements,ui[n] is the vector of
data received at the ithreceive element, andai is the vector
of feedforward filter coefficients for the ithreceive element.
See Figure 1 for an illustration of the functionality of a
multichannel DFE.

It is common to use a fractionally sampled equalizer for
timing [8]. Using the supplied framework, the feedforward
filters will each haverfs samples per received symbol, while
the feedback filter will remain the same length. At each
iteration, the data fed into each channel of the feedforward
equalizer will be moved ahead byrfs samples. See [9] for
more details on equalization.

In a direct adaptation DFE, the filter coefficients are
computed directly from the data without imposing any sort
of channel model. The least squared error (LSE) solution for
the filter coefficients, using data up until timen, are given
by

h[n] =

(

n
∑

i=−∞

z[i]zH [i]

)

−1( n
∑

i=−∞

z[i]d∗[i]

)

(3)

Notice that the filter coefficients now explicitly depend on
time due to the dependence on the received data.

The underwater acoustic channel also has a time depen-
dence, thus one would expect the desired equalizer coef-
ficients to change with time. A common way to include
time variation into a LSE type equalizer is to include an
exponential weighting factor,λ ≈ 1, into the filter coefficient
equations:

h[n] =

(

n
∑

i=−∞

λn−i
z[i]zH [i]

)

−1( n
∑

i=−∞

λn−i
z[i]d∗[i]

)

(4)
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Fig. 2. A multichannel decision feedback equalizer with a beamformer
front-end to reduce computational complexity.

This creates an adaptive equalizer, for which there is a
common recursive algorithm called the recursive least squares
(RLS) algorithm. This reduces the computational complexity
considerably. For more information on adaptive filters, [10]
is a commonly cited resource.

When the adaptive filter coefficients are calculated directly
from the received data, the result is referred to as a direct-
adaption DFE (DA-DFE). We focus on the DA-DFE structure
for two reasons: first, since it has low complexity compared
with the MMSE DFE (also known as the channel estimate
based DFE or CEB-DFE). The complexity of the CEB-DFE
is O(L3) since there is an inversion of anL × L matrix.
However, using a recursive update, the DA-DFE has com-
plexity O(L2). A second reason is that, in our experience, at
a signal to noise ratio (SNR) commonly seen in underwater
environments, the performance difference between the DA-
DFE and the CEB-DFE is negligible.

III. B EAMFORMING

In Eq. (4), the number of filter coefficients being estimated
is K × (La + Lc) + Lfb. A common engineering rule is to
use the same number of feedforward coefficients as there
are channel coefficients. Since the underwater channel has
a long delay spread, up to hundreds of milliseconds, the
computational complexity of this equalizer is very high.
Stojanovic et al [2] showed that, when the signal is narrow-
band and the number and direction of all arrivals is known,
using beamformed data is equivalent to full sensor-space
processing.

Our discussion throughout this paper assumes the use of
a vertical linear array. This choice is made for a number
of reasons: first, it is the configuration used in the experi-
mental data. Second, it is a common array configuration for
underwater acoustics, and third, it simplifies the mathematics
considerably.

Beamforming can be viewed as transforming the space
in which the data is viewed, usually from physical spatial
dimension to angle of arrival space. This is accomplished by
applying a spatial windowing function with desired spatial-
spectral characteristics. Even though underwater acoustic
communication data is not narrowband, wideband beamform-
ing methods can be used: a discrete Fourier transform (DFT)
is applied first to the data, beamforming is applied separately
to each frequency bin, and the inverse DFT is applied to
the result. The beamforming operation can be represented

mathematically as

v(ω) = ΦH(ω)u(ω) (5)

whereΦ(ω) is theK × P beamforming matrix at frequency
ω. The notationu(ω) represents the Fourier transform of the
received data andv(ω) represents the beamformed data, both
at at frequencyω . The elements of the vectors are

u(ω) =
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whereuk(ω) is the received data from sensor k andvp(ω)
is the received data in beam p. Van Trees, [11], has a
much more complete description of beamforming and array
processing.

After transforming the output of a wideband beamformer,
v(ω), into the time domain, it can be used as an input to a
DA-DFE. Since the number of beams,P , is often much less
than the number of sensors,K, this results in a reduction in
complexity by(P/K)2. Figure 2 shows the DA-DFE with a
beamformer.

IV. PROPAGATION MODEL

Since beamforming reduces computational complexity, the
next questions are how many beams to use, what shape
should they be, and what direction should they point. One
idea common in beamforming literature is to track each
arrival separately and create an orthogonal set of beams, one
for each arrival [11], [12], and [13]. These methods tend
to be computationally complex and require extra adaptive
algorithms since the arrivals move due to channel motion.
Stojanovic [1] pointed out in her work that it is not neces-
sary to separate the arrivals in an acoustic communication
framework since the feedforward equalizer will collect the
energy from all directions simultaneously.

Since channel motion induces changes in the arrival angles,
our approach is to use a geometric model of the arrival
structure to calculate a maximum arrival angle and use a
set of beams which span that angular range.

Ray tracing is a common method used for high frequency
acoustics (above 1kHz) [14]. We will use ray tracing along
with the assumption that both the sea surface and sea floor are
flat and parallel. This allows for a geometric model which
only relies on knowledge of the water column depth, the
speed of sound, the depth of the transmitter and receiver, and
the distance between the transmitter and receiver. In many
oceanographic applications, these measurements are readily
available and change very slowly with respect to the symbol
rate.

We now introduce some notation to make these ideas
mathematically concrete. Table I contains the delay and
elevation angle of arrival for the earliest arriving paths,using
the notation:



TABLE I
TABLE OF ELEVATION ARRIVAL ANGLES AND DELAYS USING

GEOMETRIC MODEL WHERE FLAT SURFACE AND BOTTOM ARE ASSUMED.

Path Arrival Angle (in radians) Delay (in seconds)

Direct π

2
+ arctan

(

dR−dT

ℓ

)

√

(dR−dt)2+ℓ2

c

Bottom π

2
+ arctan

(

2dw−dR−dT

ℓ

)

√

(2dw−dR−dT )2+ℓ2

c

Surface π

2
− arctan

(

dR+dT

ℓ

)

√

(dR+dT )2+ℓ2

c

Surface-Bottom π

2
+ arctan

(

2dw−dR+dT

ℓ

)

√

(2dw−dR+dT )2+ℓ2

c

Bottom-Surface π

2
− arctan

(

2dw+dR−dT

ℓ

)

√

(2dw+dT−dT )2+ℓ2

c
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Fig. 3. Illustration of multipath and the physically constrained angle of
arrival for the shallow water communications channel.

dw water column depth [m]
dT transmitter depth [m]
dR receiver depth [m]
ℓ distance from transmitter to receiver [m]
c speed of sound in seawater [m/s]

According to the physics of a shallow water waveguide,
there are only a finite number of propagating paths [14]. This
indicates that the arrival angles are bounded within some
range. Figure 3 shows an example of this when there are only
three propagating paths, the direct path, the bottom bounce
path, and the surface bounce path.

The next step is to extend the geometric model to allow
computation of the angle of arrival for an arbitrary delay,
τpath. For consistency, the location of the last bounce (either
surface or bottom) needs to be specified. When the last
bounce is a surface bounce, the angle of arrival,θpath is

θpath,surface = arcsin

(

ℓ

c · τpath

)

(6)

and when the last bounce is a bottom bounce, the angle of
arrival is

θpath,bottom =
π

2
+ arccos

(

ℓ

c · τpath

)

(7)

Using an delay,τrelative, relative to the shortest path (i.e.
when the propagation path is of lengthℓ), the equations for
angle of arrival can be rewritten. When the last bounce is a
surface bounce

θpath,surface = arcsin

(

(c · τrelative
ℓ

+ 1
)

−1
)

(8)

and when the last bounce is a bottom bounce

θpath,bottom =
π

2
+ arccos

(

(c · τrelative
ℓ

+ 1
)

−1
)

(9)

Fig. 4. Estimated angle of arrival and delay of the channel impulse response
arrivals from the from the SPACE08 experiment from Julian day 290 at
time 0200. The white crosses indicate the arrival points calculated from
the geometrical arrival model. The arrivals are labeled according to their
interaction with the surface and bottom from the transmitter to the receiver:
S indicates a surface bounce and B a bottom bounce.

Figure 4 shows an estimated channel from the SPACE08
experiment which will be described in Section VI. Note that
there is good agreement between the theoretical model and
the actual data.

V. I MPLEMENTATION OF THE MULTICHANNEL

EQUALIZER

Using the propagation model discussed in the last section,
it is possible to restrict the look angles of the receiver. We
devise three different methods to take advantage of this added
information: a set of uniform beams spanning the angular
space, a set of uniform beams time-aligned using the receiver
model, and a set of discrete prolate spheroidal sequence
(DPSS) beams tuned to the angles of interest.

These methods were chosen in a somewhat ad-hoc manner,
but provide a way of examining whether the angle restriction
can provide similar performance results to the full sensor
space while providing computational advantage. It is ongoing
research to find some measure of optimality for the beam
patterns used.

In all of these methods, it is assumed that the delay span
of the equalizer is given. Using Eq. (8) it is possible to use
the delay span to calculate the maximum angle which should
be considered.

A. Uniform beamformer using complete delay span

The first method we devised was to use uniformly
weighted beams, placed orthogonally at the design frequency.
This implies that an adjacent beam is placed at the first null
of the beampattern. This provides a way both for choosing
the angles and the number of beams used.



The beams are designed for a vertical linear array. The
design frequency,fd, is calculated from the element spacing
of the array,d, such that,d = fd/(2 · c), where c is the
speed of sound in water. The first beam placed is placed
at broadside since this location makes the most sense due
to common communication system geometries. This also
ensured as well that there were an odd number of beams
and that the beams were symmetrically placed.

In order to account for the inaccuracy of the model, the
delay-span of the equalizer was increased by ten symbol
periods. This provided a means of helping to ensure that the
motion of the individual paths did not take them beyond the
maximum angle dictated by the arrival model.

B. Uniform beamformer time-aligned

The model devised in Section IV provides a way to
compute the delay of first arrival is a particular look direction.
Using the same set of uniform beams from before, we now
time align the beams so that the delay of the first expected
arrival for each of the look angles are the same. Since the
model indicates there should be no energy in the beam before
the first arrival, the received data before the first arrival in
the beam direction is thrown out.

This provides a way to reduce the computational complex-
ity by further reducing the number of coefficients that need to
be estimated. There is some loss of energy since uniformly
weighted beams are not completely confined to their look
directions, so we expect there might be some small loss of
performance.

The same method of padding the delay spread with ten
extra symbol periods was used for this method as well. This
helps doubly in this method since it helps with angle motion,
and also motion in delay.

C. Discrete prolate spheroidal constraints

The main fact we are exploiting throughout this paper is
the confinement of the elevation angle. Slepian [15] showed
in his work that the discrete prolate spheroidal sequences
(DPSS) have the maximum ratio of in band energy to out
of band (or in this case in angle energy) for a given number
of coefficients. The sequences are all orthogonal, and when
taken together form a basis set of the sensor space. Finding
the DPSS coefficients tends to be slightly computationally
intensive, but this computation can be done offline or infre-
quently since the model parameters vary slowly.

One difference with the DPSS method over the others is
that it does constrain the number of beams. A good guess
of the number of beams is the number of arrivals within
the angular range and delay spread used for the equalizer.
This number can again be computed from the model by
successively computing the arrivals until one falls outside
of the desired range.

In order to handle model inaccuracies and provide a
fair comparison, the maximum angle was set to be the
first null of the beam with the largest look angle of the
uniformly weighted beamformer method. This provided the
same protection of angular motion as in previous methods.

4m

3.25m

200m

15m

TX
RX

1.2m

Fig. 5. Setup of SPACE08 experiment

VI. EXPERIMENTAL EVIDENCE

The three proposed multichannel equalization strategies
were validated using experimental evidence from the Sur-
face Processes and Acoustic Communication Experiment
(SPACE08). We used data from data sets with very different
surface conditions, from a relatively calm day to a very
stormy day.

A. SPACE08 Experiment setup

The SPACE08 was performed off the coast of Martha’s
Vineyard, MA from Oct. 14th through Nov. 1st. The water
depth was approximately 15 meters, the transmitter was
approximately 4 meters from the sea floor, and the top of the
receive arrays were about 3.25 meters above the sea floor.
Figure 5 illustrates the experimental setup.

The carrier frequency wasfc = 12.5 kHz, the bandwidth
was B = 6.51 kHz, and the sampling frequency was
fs = 107/256. The transmitted signal was the first 20,000
symbols of a repeated binary phase shift keyed (BPSK)
encoded, 4095-length M-sequence.

Before processing, the carrier was removed, the data was
low-pass filtered, and the data was down-sampled to two
samples per symbol. Time alignment of the signal was
achieved through the use of an M-sequence timing signal
at the beginning of the packet.

The receiver was a 24-element vertical array with 5 cm
element spacing placed. The array was 200m from the
transmitter to the southwest.

A data packet, known as anepoch, was transmitted once
every 2 hours throughout the duration of the experiment.
These data packets are referred to by the Julian day and time
they were transmitted.

B. Results

In order to look at a variety of sea surface conditions,
three epochs were chosen from different days: day 290 at
time 0200, day 294 at time 1200, and day 300 at time 0800.
These three epochs range from calm on day 290 to high
stormy seas on day 300. Each of the methods described in
Section V was tested for each one of these epochs, as was
the full sensor-space processing and sensor-space processing
using a number of sensors equal to the number of beams.

The DFE parameters were chosen such thatLa = 20, Lc =
80 andLfb = 99. This captured most of the multipath signal



TABLE II
INPUT SIGNAL TO NOISE RATIO FOR EACH OF THE DATA EPOCHS

EXAMINED FROM THE SPACE08EXPERIMENT.

Epoch Input SNR
Day 290, time 0200 35.5 dB
Day 294, time 1200 34.7 dB
Day 300, time 0800 34.1 dB

energy in the feedforward equalizer and canceled most of the
ISI in the feedback equalizer.

An RLS algorithm was used to estimate the DA-DFE
equalizer taps. In order to ensure that the results we observed
were not artifacts of the choice of the exponential weighting
factor, λ, ten different values were tested fromλ = 0.991
to λ = 0.9999. The DPSS trials on day 290 and 300 varied
from this convention and were tested on nine values from
λ = 0.996 to λ = 0.9999.

For the geometry of the experiment setup, our arrival
model indicated that 7 uniformly weighted beams was ap-
propriate, and also coincidentally that there were 7 arrivals
within the examined delay and angular spread. Thus, for
all the proposed methods, 7 beams was appropriate. The
elevation angles examined for the beamspace methods were
from 75.5o to 104.5o. For the DPSS method, the angular
spread used was70.3o to 109.7o.

The complexity of both the DPSS method and the
beamspace method were the same: both were a factor of
(24/7)2 ≈ 11.75 times less complex than the full sen-
sor space processing. The time aligned processing used
532 equalizer coefficients, which reduces the complexity by
(700/532)2 ≈ 1.75 over the other proposed methods and a
factor of 20.35 over full beamspace processing.

The measure used for comparing the different methods is
the output soft decision error (SDE),ǫSDE. This is a measure
of the residual error after equalization and can be represented
mathematically as

ǫSDE =
1

N

N
∑

n=1

|d[n]− d̃[n]|2

|d[n]|2
(10)

whered[n] is the transmitted symbol, and̃d[n] is the filtered
data before the symbol decision. In all cases, the bit error rate
(BER) was equal to zero due to the high operating SNR.

Figure 6 shows the results from the day 290, time 0200
epoch, Figure 7 shows the results from the day 294, time
1200 epoch, and Figure 8 shows the results from the day 300,
time 0800 epoch. The input SNR is the ratio of the measured
incoherent signal energy to noise energy before equalization.
The observed input SNR for each epoch is given in Table II.

The results for the proposed methods are similar across all
of the epochs: the DPSS method and the beamspace method
perform nearly equivalently and do as well (as on day 290)
or nearly as well (the other two days) as the full beamspace
processing; the results are within 1 dB of one another. As
expected, the time-aligned beamspace method does slightly
worse, but again it is within 1.5 dB of the best method.

For comparison of computationally similar methods, seven
of the twenty-four sensors were used as the input to a
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Fig. 6. Results from SPACE08 experiment for day 290, time 0200.
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Fig. 7. Results from SPACE08 experiment for day 294, time 1200.

multichannel equalizer. Several configurations of the seven
sensors were tested and the best configuration for each epoch
is shown on the figures. In all cases, the best seven sensors
perform at least 2 dB worse than either the proposed methods
or the full sensor space. Thus, for the same computational
complexity, the proposed methods improve the performance
dramatically and compete quite favorable with the full sensor
space results.

All of the results presented depend heavily on the choice
of the exponential weighting factor,λ. Finding the optimalλ
for a given channel is beyond the scope of this work, but it
should be kept in mind that any results presented which use
an RLS algorithm are going to be sensitive to this choice.
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Fig. 8. Results from SPACE08 experiment for day 300, time 0800.

Results in the past have compared methods for a particular
value ofλ, which can lead to deceptive results.

VII. C ONCLUSION

In this paper we presented a physically motivated waveg-
uide constraint for reducing the degrees of freedom for
a multichannel equalizer used in an underwater acoustic
communication system. The waveguide constraints are based
on a simple model of the arrival structure which can easily
be constructed with commonly available sensors.

Using this method we were able to reduce the compu-
tational complexity by as much as a factor of 20 without
sacrificing more than 1.5 dB of residual mean squared error
performance. All of the proposed methods appear to be robust
to sea surface conditions such the their relative performance
is maintained even when the sea surface is more variable.
Of the three proposed methods, beamspace processing with
full delay spread, time-aligned beamspace processing, and
DPSS beam processing, beamspace processing with full delay
spread has the best residual error on the SPACE08 data sets
while still reducing the complexity by eleven fold over the
complete sensor space processing.

When the best set of sensors are chosen such that the com-
putational complexity would be the same for the proposed
reduced-complexity methods, the proposed methods perform
up to 3 dB better than sensor space processing.

The reduced complexity processing performed better when
the modeling assumptions were met, i.e. when there was less
channel motion so the estimated angular spread was approxi-
mately correct. However, even when these assumptions were
not perfectly met, the experimental evidence gave at most 1
dB difference between the reduced-complexity and the full
sensor-space processing.

The proposed DPSS method also presents a different way
to view beamspace processing: as spanning a space rather

than steering beams towards arrivals. This is the first work
the authors know of using this alternative view.

This work represents a first step toward incorporating
physical knowledge into equalization algorithms. The pro-
posed methods are somewhat ad-hoc, but work well on the
experimental data. Further work is needed to find ways to
optimally include physical models into underwater commu-
nication systems.
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