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ABSTRACT
Shallow water acoustic communication is challenging due
to the delay and Doppler spread resulting from acoustic
scattering from surface gravity waves. A channel estimate
based decision feedback equalizer (CEB-DFE) has been
shown to be very effective at mitigating these channel effects.
One component of the DFE that is often overlooked is the
effective noise correlation matrix. In much of the literature,
the effective noise correlation matrix is approximated by
a scaled identity matrix, where the scaling is assumed to
be near the reciprocal of the signal to noise ratio (SNR).
For the underwater channel, explicitly estimating the full
effective noise correlation matrix leads to a reduction of the
residual data estimation error. In this paper we show that
correlated changes in channel impulse response coefficients
cause the effective noise correlation matrix to have off-
diagonal terms. Since the correlated changes tend to occur
slowly over time, the effective noise correlation matrix is
Toeplitz. An algorithm which exploits this fact to reduce
computational complexity is presented and is demonstrated
using experimental data.

Index Terms— digital communication, acoustics, equal-
ization, noise

I. INTRODUCTION

The shallow water acoustic communication problem is
challenging since the channel is time-varying, delay-spread,
and highly band-limited [1]. The use of a decision feedback
equalizer (DFE) is a common method in the literature for
handling the adversities of the channel [2], [3]. It has been
previously shown that a channel estimate based DFE (CEB-
DFE) outperforms one where the equalizer coefficients are
directly adapted from the received data [4].
What is often overlooked in the CEB-DFE formulation is

that here are two quantities needed to calculate the equalizer
coefficients: an estimate of the channel impulse response and
an estimate of the effective noise correlation matrix [5]. This
second quantity is often approximated as a scaled identity
matrix with a scaling equal to the reciprocal of the signal
to noise ration (SNR). [4], [6]. For the underwater channel,
this turns out to be a poor estimate of the effective noise
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Fig. 1. The magnitude of an estimated channel impulse re-
sponse at 1km from the transmitter (SPACE08 experiment).

correlation matrix and it has been shown that estimating the
full matrix reduces the residual data estimation error [7].
In the underwater environment, neighboring channel coef-

ficients are often correlated [1]. Figure 1 shows an example
of a measured time-varying impulse response from the
surface processes and acoustic communication experiment
(SPACE08) in 2008. Notice that neighboring channel im-
pulse response coefficients appear to have correlation time
variation.
In this work we will show that it is this correlated variation

that is responsible for the effective noise correlation matrix
having a non-diagonal structure. Furthermore we present
a computationally efficient algorithm for calculating the
effective noise correlation matrix.
The remainder of this paper will be as follows: Section II

presents the model used for the underwater channel. Section
III describes the structure of the CEB-DFE. The physical
explanation for the structure of the effective noise correlation
matrix is given in IV. The algorithm for efficiently estimating
the effective noise correlation matrix is given in Section V
and experimental results demonstrating its use are given in
VI. Lastly, Section VII presents a summary and concluding
thoughts.



Throughout this paper, lowercase bold letters, e.g. a, indi-
cate vectors, uppercase bold letters, e.g.A, indicate matrices,
and non-bold symbols are used for scalars. The symbols T

indicates the transpose of a quantity, ∗ the conjugate, and
H the conjugate transpose or Hermitian. All vectors are
assumed to be column vectors.

II. CHANNEL MODEL

The underwater communication channel is well modeled
as a linear time-varying channel plus (possibly correlated)
Gaussian noise. A vector of received data, u[n] can be
written in matrix vector form as [7]:

u[n] = G[n]d[n] + v[n] (1)

where d[n] is a vector of transmitted data symbols with
energy E{|d[n]|2} = σ2

d, and v[n] is noise modeled using a
vector of samples from a wide sense stationary (WSS) zero-
mean random process with variance Rv. The elements of
the transmitted data, received data, and noise vectors are:

u[n] = [u[n− Lc + 1] . . . u[n] . . . u[n + La]]T (2)
d[n] = [d[n − Lc − Nc + 2] . . . d[La + Na]]T (3)

v[n] = [v[n − Lc + 1] . . . v[n] . . . v[n + La]]T (4)

where La and Lc are the number of acausal and causal
taps respectively in the feedforward section of the MMSE
DFE equalizer and Na and Nc are the number of causal and
acausal coefficients in the channel impulse response.
The rows of the matrixG[n] are the time-varying channel

impulse response coefficients, padded with zeros so the
matrix product G[n]d[n] is equivalent to the convolution
of the channel impulse response with the transmitted data.
The matrix G[n] will be hereafter referred to as the channel
convolution matrix. In this paper, symbol-spaced sampling
is assumed for clarity, but extension to fractionally-spaced
sampling is straight forward.
The actual values of the channel convolution matrix are

rarely known a-priori and must be estimated from the
received data along with either a known training sequence or
past data estimates. This work follows the common engineer-
ing practice of assuming the channel is time invariant for the
delay spanned by the channel convolution matrix. Therefore,
one only one channel estimate is used to populate the whole
matrix.
A recursive least squares (RLS) algorithm is used in this

work to estimate the channel impulse response due to its
effectiveness and reasonable computational complexity of
order O(N2). This algorithm tracks the channel impulse
response coefficients as they vary in time, but does not
require structured knowledge of the variation as is required
for Kalman filtering and related methods. The estimate of
the channel impulse response coefficients using an RLS

approach are:

ĝ[n] =

(
n∑

i=−∞
λn−id′[i]d′H [i]

)−1( n∑
i=−∞

λn−id′[i]u∗[i]

)
(5)

where d′[n] is a data vector of length N equal to the delay
spread of the channel, N = Na + Nc, and λ ≈ 1 is an
exponential weighting factor. The exact derivation of the
RLS algorithm is outside the scope of this work, but the
details are readily available in the literature (e.g. [8] is a
commonly cited resource).

III. CHANNEL ESTIMATE BASED DECISION
FEEDBACK EQUALIZATION

The decision feedback equalizer (DFE) is has been used
widely in the underwater environment, even though it is
not optimal, because it provides a computationally tractable
way to mitigate channel effects [3]. The DFE consists of
two linear filters working in concert: the feedforward filter
collects the energy from the received signal and shapes its
response and the feedback filter cancels the inter-symbol
interference (ISI) from previously received symbols [9]. The
general DFE equation can be written as:

d̃[n] =
Lc−1∑

�=−La

hff
∗[�]u[n − �] +

Lfb∑
k=1

hfb
∗[k]d̂[n − k] (6)

where u[n] is the baseband received data, d̂[n] is the past
symbol decisions, and d̃[n] is the filtered received data
before a symbol decision has been made. The feedforward
filter coefficients are represented as hff [n] and the feedback
coefficients as hfb[n]. The total number of DFE coefficients
is L = La + Lc + Lfb.
The DFE equation can be represented more compactly

using vector notation as:

d̃[n] = hff
Hu[n] + hfb

H d̂[n − �] = hHz[n] (7)

where hT = [hff
T hfb

T ] is a vector of filter coefficients
and zT [n] = [uT [n] d̂T [n]] is a data vector containing both
the received data and the past symbol estimates.
A common cost criterion to find the optimal filter coef-

ficients is the mean squared error between the transmitted
data and the filtered received data, d̃[n], written as:

J(h) = E{|d[n]− d̃[n]|2} = E{|d[n] − hHz[n]|2} (8)

Minimizing this cost criterion across all filter coefficients
gives the Weiner-Hopf equation for the optimal coefficients:

ĥ =
(
E{z[n]zH [n]})−1 (E{z[n]d∗[n]}) (9)

Now, using the model from Eq. (1), the vector z[n] can be
rewritten as:

z[n] =
[
G[n]d[n] + v[n]

d̂[n]

]
(10)
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Fig. 2. Illustration of the structure of a CEB-DFE.

At this point, it is useful to introduce some new notation.
The columns of the channel convolution matrix,G[n], can be
labeled according to offset of the data symbol by which they
are multiplied relative to the data symbol being estimated:

G[n] =
[
g−Lc−Nc+2[n] . . . g0[n] . . . gLa+Na

[n]
]
(11)

where the column g0[n] corresponds to the data symbol
that is being estimated at time n. A new matrix, Gfb[n], is
assembled from the columns corresponding to the data sym-
bols used in the feedback filter of the DFE. The remaining
columns are assembled into another new matrix, Go[n]. If
all previously received data symbols are used in the feedback
filter, the channel convolution matrix can be written as:

G[n] =
[
Gfb[n] G0[n]

]
(12)

Plugging in Eq. (10) into Eq. (9) and assuming the channel
convolution matrix is known, the MMSE DFE coefficients
are given by the expressions [7]:

hff [n] = (G0[n]GH
0 [n] + σ−2

d Rv)−1g0 (13)

hfb[n] = −Gfb
H [n]hff [n] (14)

When the channel convolution matrix is not known, it is
replaced by an estimate, Ĝ[n]. This version of the decision
feedback equalizer is known as the channel estimate based
decision feedback equalizer (CEB-DFE) for obvious reasons.
Figure 2 shows a block diagram of the structure of this
equalizer.
It is often assumed for terrestrial RF communication

systems that the observation noise, v[n], is white with zero
mean and variance σ2

v [6]. This implies that the noise
correlation matrix, Rv is a scaled identity matrix, such
that Rv = ρI, where the inverse SNR ρ = σ2

v/σ2
d [4]. It

has previously been shown that this assumption leads to
an increased residual data estimation error for underwater
communications [7]. The next section provides physical
reasoning for why the assumption of a diagonal noise
correlations matrix is not correct for the underwater channel.

IV. STRUCTURE OF EFFECTIVE NOISE
CORRELATION MATRIX

In underwater communication systems the channel coef-
ficients are rarely known a-priori and must be estimated
from the received data. Due to observation noise and the

time-variability of the channel, the estimate of the channel
usually contains some error. This estimation error can be
represented mathematically as:

G[n] = Ĝ[n] + Γ[n] (15)

where Ĝ[n] is the estimate of the channel convolution matrix
and Γ[n] is the error in the estimate. The received data vector
can be rewritten using this model:

u[n] = G[n]d[n] + v[n]

= Ĝ[n]d[n] + Γ[n]d[n] + v[n]

= Ĝ[n]d[n] + w[n] (16)

where the effective noise,w[n] = ΓH [n]d[n]+v[n], includes
the portion of the received signal that is not included in the
term Ĝ[n]. Assuming that the transmitted data symbols are
independent and have unit energy (σ2

d = 1), the variance of
the effective observation noise is a sum of the observation
noise variance and a term that depends on the channel
estimation errors. This can be written as:

Rw[n] = E{w[n]wH [n]}
= E{(Γ[n]d[n] + v[n])(Γ[n]d[n] + v[n])H}
= RΓ[n] + Rv[n] (17)

where RΓ[n] = E{Γ[n]ΓH [n]} is the channel estimation
error correlation matrix.
Assuming that the MMSE channel estimate is used, so the

error is zero-mean (the estimator is unbiased) and uncorre-
lated with the estimator, the feedforward and feedback DFE
equalizer coefficients can be written as:

hff [n] = (Ĝ0[n]Ĝ
H

0 [n] + RΓ[n] + σ−2
d Rv[n])−1g0

hfb[n] = −Ĝfb
H [n]hff [n] (18)

The feedback equalizer coefficients have the same form
as before with the estimate used in place of the true
channel coefficients. An additional term has appeared in the
feedforward equalizer coefficients that is a product of the
channel convolution matrix error terms. This error term and
the true noise correlation matrix are grouped into one term,
which will be called the effective noise correlation matrix,
R0. This matrix is the sum of the interference caused by
channel estimation errors and the scaled observation noise.

R0 = RΓ[n] + σ−2
d Rv[n] (19)

The elements of RΓ[n] are related to the correlation
between the channel estimation error coefficients. The es-
timation error in the channel is a result of both observation
noise and the fact that the estimate is found by an averaging
method which causes a lag error [10]. The optimal point of
channel estimation is where the trade-off between lag error
and observation noise induced error is a minimum: longer
observation windows lead to more lag error but decrease
observation noise induced error.



The main diagonal of the matrix RΓ[n] is the total energy
in the channel estimation error and the off-diagonal terms
represent the correlation across time and delay of the channel
estimation errors. If there is correlated motion in the channel
impulse response coefficients, there will be correlated lag
error across the coefficients. This leads to off-diagonal terms
at locations corresponding to the delay between the channel
impulse response coefficients: often neighboring coefficients
are more correlated leading to larger values near the main
diagonal of RΓ[n].

V. ESTIMATING THE EFFECTIVE NOISE
CORRELATION MATRIX

In the underwater environment, the effective noise cor-
relation is much smaller on a term by term basis than the
term induced by the channel estimation errors. Therefore, it
is the structure of this channel estimation error term that is
important. The correlation structure of the channel errors are
slowly varying compared with common symbol rates (typ-
ically around five kilo-symbols per second or higher). The
effective correlation matrix is therefore well approximated
by a Toeplitz-Hermitian matrix. Tracking only the first row
(or column) of the matrix is sufficient to create the whole
structure of the matrix.
An implicit assumption of this approach is that the channel

is roughly time-invariant for the delay spanned by the
channel convolution matrix. If this were not the case, there
would be more noise in the estimates of the bottom rows
of Ĝ[n] than the top, which would cause the matrix not to
be Toeplitz. The results from the data examined seem to
imply that the assumption of time-invariance is reasonable,
but this effect might be important in channels with very high
Doppler.
Another assumption of this approach is that the correlation

across delay is approximately time-invariant on the sampling
timescale. This is a safe assumption since processes that
are changing more rapidly than the sampling time appear
as incoherent noise in the output. Also, averaging methods
are used to estimate the effective noise correlation matrix,
so transient effects will not strongly influence the estimate.
The error vector is calculated using the channel estimate,

estimates of past transmitted data, and the received data [7].

ê[n] = u[n] − Ĝ[n]d̂[n] (20)

Using the channel model from Eq. (1), the error vector can
be rewritten as [7]:

ê[n] = G[n]d[n]+v[n]−Ĝ[n]d[n] = Γ[n]d[n]+v[n] (21)

In order to maximize the number of snapshots available,
the unbiased correlation of the error vector is calculated as:

γi[n] =
1

L − 1 − i

L−1−i∑
j=0

ê[n, i+j]ê∗[n, j], i = 0, . . . , L−1

(22)

where ê[n, k] is the kth element of the error vector at time
n, L = Lc +La is the number of equalizer coefficients, and
γi is the ith component of the unbiased error vector corre-
lation. The γi[n] values are averaged using a exponentially
decreasing window to estimate the values of the first row of
the effective noise correlation matrix:

R̂0,[1,i][n] =
n∑

k=0

λγi[k] (23)

This allows the algorithm to capture the time-varying na-
ture of the statistics while approximating the value R0[1, i],
the ith component of the first row of the effective noise
correlation matrix at time n. The complete effective noise
correlation matrix is constructed using assuming a Toeplitz,
Hermitian structure of the effective noise correlation matrix.
There are several advantages to this algorithm over previ-

ously proposed algorithms:

• It reduces the number of components that must be
tracked to L from L2. This helps with the space
requirements for the algorithm and allows for extra
averaging of the quantities.

• It introduces an easy flexibility for modifying the struc-
ture of the interference plus noise correlation matrix.
If it is assumed that the matrix is tri-diagonal, then
only two parameters have to be tracked. The constructed
matrix will be tri-diagonal, with the remaining elements
all set to zero.

• If this structure is valid, there may be a performance
gain due to the extra averaging of the error coefficients.
Since there are fewer values to track, it is possible to
track them with lower error.

The last point is especially interesting since underwater
communication problems are often data limited due to time-
variation of the channel. This method provides a way to
more effectively use the available data. In the next section,
this algorithm is applied to experimental data and compared
with other approaches.

VI. EXPERIMENTAL RESULTS

The SPACE08 was performed off the coast of Martha’s
Vineyard, MA from Oct. 14th through Nov. 1st. The water
depth was approximately 15 meters, the transmitter was
approximately 4 meters from the sea floor, and the bottom
of the receive arrays were about 3.25 meters above the sea
floor. Figure 3 illustrates the setup of this experiment.
The data signal had a bandwidth of B = 6.51 kHz and

was modulated onto a carrier with frequency fc = 12.5 kHz.
The sampling frequency was fs = 107/256. The transmitted
signal analyzed here is a 4095-length M-sequence that was
repeated 89 times for a packet that is one minute in length
(with some zero-padding). The data was modulated using
binary phase shift keying (BPSK) onto a square-root raised
cosine pulse.
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Fig. 3. Setup of the SPACE08 experiment for the 1 km
receiver.
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Fig. 4. Top-left element of the R̂0 matrix as tracked using
the method proposed in [7]. This value is a measure of the
effective noise variance.

Figure 4 shows a plot of the top-left element of the effec-
tive noise correlation matrix using an CEB-DFE algorithm
where the entire structure of the effective noise correlation
matrix is estimated. This data is from the third element from
the top of the receive array located 1 km to the southeast of
the transmitter. This plot shows emphasizes the fact that the
effective noise autocorrelation matrix is not time-invariant,
there are swings of 4dB, and must be tracked in order for
good equalizer performance.
Several methods for approximating the effective noise cor-

relation matrix were examined. Table I provides a description
of each of the methods examined.
Figure 5 shows the bit error rate and soft decision error

from the SPACE08 experiment. The soft decision error is the
residual data estimation error before any symbol decisions
are made and is given by:

εSDE =
∑ |d[n] − d̃[n]|2

σ2
d

(24)

The SNR is varied by adding in the appropriate amount
of noise which was measured using the same hydrophone
during the same time period.
The data clearly shows that there is a penalty for assuming

that the estimated noise matrix is diagonal (labeled DIAG
in the plot). However, there is no additional penalty for
estimating this diagonal matrix using only one estimated
value and assuming it is Toeplitz (labeled SING in this plot).

Table I. Description of methods compared using the
SPACE08 data set.

Method Label Description

CEB CEB-DFE where the full effective noise correlation
matrix is estimated from the data.

DA DFE where the equalizer coefficients are estimated
directly from the data (direct adaptation).

DIAG CEB-DFE where first entry (top-right entry) of the
matrix bR0 is used as an estimate of the effective
noise variance. The effective noise correlation ma-
trix is approximated as a scaled identity matrix.

SING CEB-DFE where the effective noise correlation
matrix is approximated by a diagonal matrix with
entries equal to the main diagonal of bR0.

CALC CEB-DFE where the effective noise correlation
matrix is estimated as a Topelitz-Hermitian matrix
as described in this paper.

AMB CEB-DFE where the effective noise correlation
matrix is approximated as a scaled identity matrix,
where the scaling is based on the SNR measured
from the basebanded data before any equalization.

By directly adapting the equalizer coefficients from the
data (labeled DA), the performance is similar at high SNR
to the MMSE and proposed algorithm. The performance
falls off as the noise is increased. This is likely due to the
noise being non-stationary and so the variation of the noise
negatively affects the direct adaptation more than the channel
estimate based algorithms.
Overall, this data shows that the proposed method for es-

timating the effective noise correlation matrix as a Toeplitz-
Hermitian matrix (labeled CALC) performs as well as al-
gorithm which estimates the complete effective noise corre-
lation matrix (labeled CEB). This is a win computationally
since the proposed method is linear in the dimension of the
effective noise correlation matrix, while the previous method
is quadratic. Also, it demonstrates that the assumption that
the channel is roughly time-invariant over the delay of the
channel convolution matrix is valid for this data set since
the Toeplitz-Hermitian matrix was a good approximation.

VII. CONCLUSIONS

In this paper we have provided a physical explanation for
the existence on off-diagonal elements in the effective noise
correlation matrix: neighboring channel impulse response
coefficients vary in a correlated manor. This insight explains
why the off-diagonal terms appear for underwater acoustic
communication systems, but aren’t present in terrestrial RF
communication systems.
An algorithm for efficiently estimating the effective chan-

nel correlation matrix was provided that did as well as any
previously proposed algorithm, but at a lower computational
cost. This algorithm took advantage of the fact that the
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Fig. 5. Results after equalizing 1000m data from the
SPACE08 experiment. CEB is the MMSE DFE where the
full effective noise correlation matrix is estimated, DA is
the direct adaptation DFE, DIAG is the MMSE DFE only
using the diagonal portion of R̂0, SING is the MMSE DFE
only using the top-left entry of R̂0 times the identity matrix,
CALC is the proposed MMSE algorithm, and AMB is the
MMSE DFE where the averaged noise variance times the
identity matrix is used.

effective noise statistics are slowly varying and so the matrix
is well approximated as Toeplitz-Hermitian. The reduction
in computational complexity is important in array systems
where the number of coefficients being estimated is quite
large and efficient algorithms are needed for practical im-
plementation.
Also, it was shown that at the least, the effective noise

variance needs to be continuously tracked throughout a data
packet in order to prevent loss of system performance. Since
much of the literature uses one estimate of the effective noise
variance, this is another way in which underwater systems
differentiate themselves from their terrestrial counterparts.
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