

1

Underwater Communications

Ballard Blair bjblair@mit.edu April 19, 2007

WHOIE Adviser: James Preisig

MIT Adviser: Art Baggeroer

April 19, 2007

Underwater Communications Ballard Blair

- BS in Electrical and Computer Engineering, Cornell university 2002
- MS in Electrical and Computer Engineering, Johns Hopkins 2005
- Hardware Engineer, JHUAPL 2002-2005
- PhD Candidate, MIT/WHOI Joint Program

- Ocean covers 70% of planet
- 11,000 meters at deepest point

Underwater Technology

WHOI, 2006

April 19, 2007

Underwater Communications Ballard Blair

Pliī

Sensor networks

- Autonomous underwater vehicles (AUV)
- Gliders

Manned Vehicles

Science

- Geological / bathymetric surveys
- Underwater archeology
- Ocean current measurement
- Deep ocean exploration
- Government
 - Fish population management
 - Costal inspection
- Industry
 - Oil field discovery maintenance

WHOI, 2005

- Ocean observation system
 - Costal observation
- Military
 - Submarine communications (covert)
 - Ship inspection
- Networking
 - Mobile sensor networks (DARPA)
- Vehicle deployment
 - Multiple vehicles deployed simultaneously
 - Resource sharing among vehicles

Example Communication System

PLUSnet/Seaweb

EANOGR

Phir

- RF (~1m range)
 - Absorbed by seawater
- Laser (~100m range)
 - Hard to aim/control
 - High attenuation except for blue/green
- Ultra Low Frequency (~100 km)
 - Massive antennas (miles long)
 - Very narrowband (~50 Hz)
 - Not practical outside of navy
- Cable
 - Expensive/hard to deploy maintain
 - Impractical for mobile work sites

.....

Acoustics is the solution

- Fairly low power
 - ~10-100W Tx
 - ~100 mW Rx
- Well studied
 - Cold war military funding
- Compact
 - Small amount of hardware needed
- Current Best Solution

WHOI Micromodem

 Acoustic wave is compression wave traveling through water medium

Wave Equation for Pressure

$$\rho \, \nabla \cdot \left(\frac{1}{\rho} \, \nabla p \right) - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = 0 \; , \label{eq:phi}$$

Wave Equation for Particle Velocity

$$\frac{1}{\rho} \nabla \left(\rho c^2 \, \nabla \cdot \mathbf{v} \right) - \frac{\partial^2 \mathbf{v}}{\partial t^2} = \mathbf{0} \, .$$

April 19, 2007

Underwater Communications Ballard Blair

Sound Profile

Speed of sound ~ 1500 m/s

Underwater Communications Ballard Blair

Global Ocean Profile

Schmidt, Computational Ocean Acoustics

Underwater Communications Ballard Blair Phir

Shallow water profile

Schmidt, Computational Ocean Acoustics

Underwater Communications Ballard Blair Phi

•

•

Vertical sound speed profile impacts

- the characteristics of the impulse response
- the amount and importance of surface scattering
- the amount of bottom interaction and loss
- the location and level of shadow zones
- Horizontal Speed of Sound impacts
 - Nonlinearities in channel response

Propagation Paths

- A. Arctic
- B. Surface duct
- C. Deep sound channel

- D. Convergence zone
- E. Bottom bounce
- F. Shallow water

Schmidt, Computational Ocean Acoustics

Multipath

- Micro-multipath due to rough surfaces
- Macro-multipath due to environment

Underwater Communications Ballard Blair Тx

- Time variation is due to:
 - Platform motion
 - Internal waves
 - Surface waves
- Effects of time variability
 - Doppler Shift

$$f_d = f_c \frac{u}{c}$$

- Time dilation/compression of the received signal
- Channel coherence times often << 1 second.
- Channel quality can vary in < 1 second.

Acoustic Focusing by Surface Waves

Phir

- Channel tracking and quality prediction is vital
 - Equalizer necessary and beefy
- Coding and interleaving

In networks, message routing

Shadow Zones

Clay and Medwin, "Acoustical Oceanography"

- Sometimes there is no direct path (unscattered) propagation between two points. All paths are either surface or bottom reflected or there are no paths.
- Problem with communications between two bottom mounted instruments in upwardly refracting environment (cold weather shallow water, deep water).
- Problem with communications between two points close to the surface in a downwardly refracting environment (warm weather shallow water and deep water).

Shadow Zone Examples (Deep Water)

22

Ambient Noise

- Ambient noise
 - Passing ships, storms, breaking waves, seismic events
 - p.s.d. decays as 20dB/decade ->N(f)= $10^{10} f^{-2}$ Watts/Hz re 1µPa
- Primary natural sources
 - bubbles, rain, and biologic sources such as snapping shrimp
- Bubbles
 - Can cause communications channel to disappear
 - Can increase surface scattering losses (up to 10dB per bounce)
 - Attenuation in bubble cloud can be 20dB/meter
 - Freq dependent attenuation (peak near 30kHz)
 - Can persist for minutes
 - Cause sound (noise)

Underwater Communications Ballard Blair

Figure from:

Stojanovic, WUWNeT'06

Underwater Communications Ballard Blair

Bubble Cloud Attenuation

Underwater Communications Ballard Blair Figures from J. Preisig

25

Plii

- Center frequency typically around 10-30kHz
- Typical Bandwidth ~ 5-15kHz
- Channel is inherently band-limited
 - Modulation essential for high rate communications

Path Loss

- Spherical Spreading ~ r $^{-1}$
- Cylindrical Spreading ~ r $^{-0.5}$
- Absorption ~ $\alpha(f)^{-r}$
 - Thorp's formula (for sea water):

$$10\log\alpha(f) = 0.11\frac{f^2}{1+f^2} + 44\frac{f^2}{4100+f^2} + 0.000275 f^2 + 0.003 \quad (dB/km)$$

Underwater Communications Ballard Blair l liii

Short Range Attenuation

Underwater Communications Ballard Blair Illii

Long Range Bandwidth

Figure courtesy of Costas Pelekanakis

Underwater Communications Ballard Blair Phir

Attenuation of Sound in Seawater

Schmidt, Computational Ocean Acoustics

April 19, 2007

Underwater Communications Ballard Blair Phir

Modulation frequency must be kept low

- System inherently wide-band
- Frequency curtain effect
 - Form of covert communications
 - Might help with network routing

- Propagation of sound slower than light
 - Feedback might take several second
 - Channel changing faster than feedback
- Most underwater nodes battery powered
 - Communications Tx power (~10-100W)
 - Retransmissions costly

Example Hardware

Conclusions

- Communicating in the ocean is difficult
 - Time varying channel
 - Inconsistent noise
 - Shadow zones
 - Bubbles
 - Latency
- Many questions still left to be answered
 - Communications is not well researched
 - Many opportunities for advances

- I would like to thank the following people for helping me with this presentation:
 - Jim Preisig
 - Costas Pelekanakis
 - Henrik Schmidt
 - Milica Stojanovic
 - WHOI Acoustic team

Coding for the underwater channel