

1

Are Acoustic Communications the Right Answer?

Ballard Blair bjblair@mit.edu April 19, 2007

WHOI Adviser: James Preisig

MIT Adviser: Art Baggeroer

- BS in Electrical and Computer Engineering, Cornell university 2002
- MS in Electrical and Computer Engineering, Johns Hopkins 2005
- Hardware Engineer, JHUAPL 2002-2005
- PhD Candidate, MIT/WHOI Joint Program

- Starting Research
 - Had not examined issue before
- Good for proposals
 - Can't do anything without money
- Interested in Results

- De facto standard
 - Appropriate size, power, and scale
 - Question not formally studied
- Large Knowledge Base
 - Acoustics channel well studied
 - DoD funding

l liii

Pros

- Same as terrestrial wireless communications
- "Low" power
- Cons
 - High attenuation in short distance (~60dB/m+)
- Notes
 - Argument in literature about attenuation
 - Commercial systems available

- Pros
 - Travels through water
 - Successfully tested and used
- Cons
 - Massive antennas needed for TX/RX
 - Band owned by military
 - Not practical for small vehicles / two way comms
- Notes
 - Al-Shamma'a, IEEE Trans on Antennas and Propogation 2004

Alternatives – Lasers / LED

• Pros

- High data rates (kbps-Mbps)
- Low power
- Cons
 - Distance limited due to attenuation (~100m)
 - Narrow bandwidth of light
 - Cloudy water / fish / Line of sight
 - Pointing and tracking
- Notes
 - WHOI working on laser modem (good results)
 - MIT some success with combined acoustic / LED
 - Application Specific

• Pros

- Not much environmental effect
- High data rates
- Reliable
- Cons
 - Expensive to deploy/recover/repair
 - Not mobile

- Magnetic Field Communications
 - Still in development (Canadian company)
 - Short range communications (assume <1km)
- Other alternatives?
 - Alternative technology may exist

Acoustics is the solution

- Fairly low power
 - ~10-100W Tx
 - ~100 mW Rx
- Well studied
 - Cold war military funding
- Compact
 - Small amount of hardware needed
- Current Best Solution

WHOI Micromodem

AComms Problems - Channel

Pliī

- Channel Tracking
 - Complex, random channel
 - Necessary for reliable communications
- Bandwidth
 - Distance Dependant
 - Band-limited and wide-band
- Speed of Sound / Propagation Paths
 - Shadow Zones
- Attenuation
- Noise
 - Natural and man-made sources
 - Bubbles

Acoustic Focusing by Surface Waves

12

Bubble Cloud Attenuation

Ballard Blair

Plii

Attenuation of Sound in Seawater

Schmidt, Computational Ocean Acoustics

Acoustic Comms Ballard Blair

- Propagation of sound slower than light
 - Feedback might take several second
 - Channel changing faster than feedback
- Most underwater nodes battery powered
 - Communications Tx power (~10-100W)
 - Retransmissions costly

Example Hardware

Ballard Blair

Current Micromodem Applications - Seabed

- Low Rate Communications (256 bps, 32 bytes per packet) WHOI, 2005
 - Telemetry return XYZ, Roll, Pitch, Heading, Goal #
 - More complex telemetry not possible
- Polling scheme (crude)
 - No interrupt for Commands
- Only one command abort

More Current Micromodem Applications

Autonomous Kayaks

PLUSnet (gliders, AUVs)

• ONR (Remus)


```
WHOI Acoustic group
```


Other Current Acomms Applications

- Science
 - Geological / bathymetric surveys
 - Underwater archeology
 - Ocean current measurement
 - Deep ocean exploration
- Government
 - Fish population management
 - Costal inspection
- Industry
 - Oil field discovery maintenance

Future Applications

- Still primitive

WHOI, 2006

Acoustic Comms Ballard Blair

ORION (Ocean Research Interactive Observatory Networks)

WHOI, 2005

Future Applications – ORION

ORION Project Literature

Acoustic Comms Ballard Blair Phi

- Ocean observation system
 - Costal observation
- Military
 - Submarine communications (covert)
 - Ship inspection
- Networking
 - Mobile sensor networks (DARPA)
- Vehicle deployment
 - Multiple vehicles deployed simultaneously

- Communications and Ranging
 - Intimately tied
 - Common solution
- Underwater Networking
 - Short jumps, larger bandwidth, higher freq.
 - Complex Routing Algorithms
- Multiple AUV
 - Resource Sharing
 - Efficient message passing

My Current research

Fig. 17. A factor graph for a LDPC code.

Kschischang, Trans of Info Theory, 2001

- Acoustic communications
 - Current "best" solution (most universal)
 - Still not an easy problem
- Acomms research and Application
 - Many exciting things happening
 - Much more to come

Questions?

http://www.ukuleleman.net/2005_08_01_ukemanspeaks_archive.html