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Illil- Channel Model
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Matrix-vector Form: Split Channel Convolution Matrix
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Ill I Decision Feedback Equalizer (DFE) - 4\
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* Problem Setup: x

e Estimate using RX data and TX data estimates
zln] = [un—Le+1] ... un] ... uln+ L), din—1] ... dn— Lfb]]T

A ~H A

* DFE Eq: [d_n] = h,[n]z[n] = hiun] + hg)dfb]
Solution to (" hom [“] _ Rz—l [H]l‘zd [‘”] MMSE Sol. Using Channel Model
Weiner-Hopf Eq. Rz[“] _ E{ZZH} hg = [GOG0+RV]_1go

|\ rza = E{zd"} he, = —Gphg

* Two Parts:
— (Linear) feed-forward filter (of RX data)
— (Linear) feedback filter (of data estimates)
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Illil- DFE Strategies
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IIIII- Central Question:

Why is the performance of a channel estimate
based equalizer different than a direct
adaptation equalizer?
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|||.|- Comparison between DA and CEB

* In the past, CEB methods empirically shown to
nave lower mean squared error at high SNR
* Reasons for difference varied:

— Condition number of correlation matrix

— Num. of samples required to get good estimate
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|||.|- Comparison between DA and CEB

1930

* Our analysis shows the answer is:
Longer corr. time for channel coefficients than

MMSE equalizer coefficients at high SNR

* Will examine low SNR and high SNR regimes

— Use simulation to show transition of correlation
time for the equalizer coefficients from low to high
is smooth



Illil- Low SNR Regime

Update eqn. for feed-forward equalizer coefficients (AR model assumed):

hgln +1] = (Goln+1GH[n +1] +Ry) (g, [n + 1])

~ R, '(agy[n] +wn])

= ol "

Approximation:

Has same correlation structure

[ Ry + G[‘TT-]GH[H] ~ Ry ] as channel coefficients
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U High SNR

hg[n+1] = (Go[n +1]Gg [n+ 1] + Ry) ™ (go[n + 1])

Approximation:

[ Gy [n] Ggl n] + Ry = G[n] Ggl [n']}—>(Go['n] Gé{ n))he[n] = go[n]
Matrix Prqduct: ] \

/Reduced_Channel Convolution Matrix:

g3ln— L+ 1] 0 0 e 0 o2 -
giln—L+2] gjln—L+2 0 0 9091 -
Go= |gin—L+3] gfln—L+3] giln—L+3] --- 0 GGl = dogi -+

L e giall  giall - gilnl] o ]

. . T
Reduces to single tap: [ll[n]=[1/go 00 .. O] ]
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Correlation Coefficient

Correlation Coefficient

Correlation over SNR — 1-tap
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Amplitude [dB]
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Multi-tap correlation
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Strong linear
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IIIII- Take-home Message

* Channel impulse-response taps have longer
correlation time than MMSE equalizer taps

— DA has greater MISE than CEB

* For time-invariant statistics, CEB and DA
algorithms have similar performance
— Low-SNR regime (assuming stationary noise)

— Underwater channel operates in low SNR regime
(<35dB)



|||.|- Questions?
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Assumptions

Unit variance, white transmit data

E{d[n]d"[n]} =1
e TX data and obs. noise are uncorrelated

E{v[n]d"[m]} =0
— Obs. Noise variance:

R, = E{vn]vf[n]}
e Perfect data estimation (for feedback)
d=d
Equalizer Length = Estimated Channel Length
N,+N_ =L +L.
MMSE Equalizer Coefficients have form:

heg

[GoGY + Ry 1Gs

hg, = —Gjhg

10/28/2009

16

Yoy s



IIIII- WSSUS AR channel model

* Simple channel model to analyze
 Similar to encountered situations

gln+ 1] = ag[n| + w(n]

Ryglk] = E{g[n]¢*[n+ k]} =
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|||.|- Future Work

* Reduce time needed to update channel model
— Sparsity
— Physical Constraints
— Optimization Techniques

* Combine DA and CEB equalizers

— Better performance at lower complexity
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